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Abstract. In this paper we introduce and analyze a passive synthetic aperture radar system motivated by space surveillance
radar networks for detecting, tracking, imaging, and identifying small debris (aka target) in low-earth orbit. We propose a system
with a powerful transmitter on the ground and one or several flying receiver platforms. Each platform can separate the direct
signals from the source, coming from below, and the reflected signals, coming from above. In the case of a single receiver
platform, the image is formed by cross correlating the Doppler-compensated direct and reflected signals. We show that its
resolution is described by the ideal Rayleigh resolution formulas. That is, range resolution is proportional to the transmitter
pulse width, and the cross range resolutions are determined by the synthetic angular cones determined by the target and receiver
trajectories. However, the one-receiver imaging modality is not capable of determining both the target location and velocity. In
the case of multiple receiver platforms, the image is computed by cross correlating the Doppler-compensated reflected signals.
In this case, the image focusing relies on di↵erences of travel times between the moving target and the receivers, and we show
that two well separated pairs of receiver platforms are su�cient for determining the target location and velocity. The resolution
formulas for this imaging modality are new and di↵erent from the Rayleigh resolution limits. They are derived analytically
from first principles, and are validated with detailed numerical simulations.

1. Introduction. In synthetic aperture radar (SAR), moving antennas are used to emulate extended
apertures while the transmitter and receiver antennas are themselves small. In monostatic systems a flying
platform (airborne or spaceborne) carries both the transmitter and receiver antennas [5, 7]. It is possible
to have more elaborate, bistatic systems, in which the transmit and receiver antennas are separated by
a distance that is as large as the expected target range. Since the early implementation of bistatic SAR
systems [2], interest on bistatic SAR has increased and bistatic systems with many di↵erent receive-transmit
configurations have been implemented. Most bistatic SAR systems image ground reflectivity from spaceborne
and/or airborne transmitters and receivers. A spaceborne/airborne bistatic SAR system can, for example,
use a satellite as a transmitter and an aircraft as a receiver as in [25]. In [1] the feasibility of space-ground
bistatic SAR using navigation satellites as transmitters of opportunity and a fixed ground-based receiver is
demonstrated.

In this paper we consider SAR systems for the tracking and imaging of small, fast and high-flying
objects (aka targets) using airborne receiver platforms and one ground-based transmitter. We assume that
the transmitter is emitting pulses repeatedly with a pulse repetition interval that is large compared to the
total travel time from the transmitter to the target and then back to the receivers. This will be the situation
in practice and the more explicit scaling assumptions are discussed in Appendix A.1. There are at least four
reasons for considering such passive systems. First, the transmitter is on the ground, so it can be powerful
enough to illuminate a large sector in the sky. Second, the receiver platform is moving, so it can generate
large synthetic apertures. Third, passive correlation-based imaging does not require knowing the emitted
signals, and it is not very sensitive to the source location in the case of multiple receiver platforms. Four,
imaging with multiple receiver platforms flying above the turbulent atmosphere is robust with respect to
atmospheric lensing [20] and aberrations [22, 24], as follows from [11, 13].

A potential application of the proposed passive SAR systems is the identification and tracking of small-
sized (1-10 cm) energetic debris in low-earth orbit (below 2000 km), which can be a threat to the integrity
of satellites [9, 15, 28]. Older space surveillance systems operating in the VHF-band (30 � 300 MHz) have
recently been updated to improve resolution, and are now in the S-band (2 � 4 GHz). The turbulent
atmosphere is not an issue at these frequencies. However, turbulence will be a limiting factor for future
generations of space surveillance systems, operating in X-band (8 � 12 GHz) [16, 17, 19]. Passive SAR
systems with multiple receiver platforms flying above the turbulent atmosphere would allow bypassing this
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Figure 1.1. Illustration of the imaging setup with a single receiver platform. The aperture A
R

spanned by the receiver
at altitude H

R

is shown in green, and the aperture A
T

spanned by the target at altitude H
T

is shown in blue. The synthetic
angular cones of opening angles of order A

R

/H
R

and A
T

/H
T

, which determine the cross-range resolutions of the images are
shown with the dashed red lines.

limitation.

We consider two imaging configurations with a single transmitter at location X

E

on the ground. The
first is for a single flying receiver platform, and the second is for one or two pairs of receiver platforms,
flying in tandem. The receiver trajectories are at altitude H

R

, at known locations X
R

(t) and with velocity
V

R

assumed constant and horizontal for simplicity. They span a linear synthetic aperture A
R

= |V
R

|T
tot

over the duration T
tot

of time t, and the goal of imaging is to determine the trajectory X

T

(t) of a high-
flying target from the measurements gathered over this aperture. We study in detail the case of a target in
translational motion, at constant horizontal velocity V

T

satisfying |V
T

| � |V
R

|. This defines a linear ISAR
(inverse SAR) aperture A

T

= |V
T

|T
tot

, at unknown altitude H
T

� H
R

. Extensions of the results to general
target trajectories (X

T

(t),V
T

(t)), that can be determined by a flow from the initial position and velocity,
are briefly addressed.

In both configurations the image is formed by the superposition of cross correlations of the recorded
signals, synchronized using travel time delays. The imaging function has the general form used in other
passive correlation-based imaging methods [12, 13], but there are Doppler e↵ects that must be taken into
account. Such e↵ects are known to be important in satellite active SAR and ISAR (when there is a single,
fixed transmitter/receiver antenna and a moving target) [6, 27], and in passive SAR [31, 32, 34, 35]. We use
them in our imaging function by introducing Doppler compensation factors in the cross-correlations.

In the configuration with a single receiver platform, illustrated in Figure 1.1, the image is formed with
cross correlations of the direct and reflected signals, Doppler compensated and synchronized with travel time
delays. The direct arrival time from the transmitter at X

E

to the receiver at X
R

(t) plays an important role
in the synchronization, so the method is highly sensitive to knowing X

E

. The images also lack robustness
with respect to turbulent atmospheric distortions, so single receiver imaging systems are not expected to
perform well in high frequency (X-band) regimes. If turbulent e↵ects are negligible and X

E

is known, the
image resolution is described by the Rayleigh formulas that hold in general passive imaging systems with
physical arrays [13], as well as for active ISAR [6, Section 7.3.6]. Indeed, we show that the range resolution,
that is, the accuracy in the estimate of the altitude H

T

of the target, is inversely proportional to the
transmitter bandwidth B, or equivalently, proportional to the transmitter pulse width. The resolution along
the direction of the target trajectory is given by �

o

H
T

/A
T

, where �
o

is the transmitter central wavelength,
and the resolution along the direction of the receiver trajectory is �

o

H
T

/A
R

. These resolution formulas are
derived from first principles, and are confirmed with detailed numerical simulations. They hold in a marginal
sense because they represent focusing in a plane, when the coordinate out of plane and the target velocity
are fixed at the correct values. The limited data acquired by the single receiver platform makes it impossible
to determine the target trajectory from the image. Without prior information we can estimate at most two
components of the target location: its range and cross-range in the direction of the trajectory. Alternatively,
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Figure 1.2. Illustration of the imaging setup with a pair of receiver platforms flying at the same speed V
R

. The aperture
A

R

spanned by the receivers at altitude H
R

is shown in green and red, and the aperture A
T

spanned by the target at altitude
H

T

is shown in blue. The receivers are separated by Z.

if we knew the location of the target along its trajectory at unknown height H
T

, we could determine H
T

and the range component of V
T

.

In the case of multiple receiver platforms, the images are formed with Doppler compensated cross
correlations of the reflected signals, synchronized with di↵erences of the travel times of these signals. Were it
not for the Doppler e↵ects, the travel times of the direct arrivals from the transmitter would cancel out, and
knowledge of X

E

would not be needed to form the image. The transmitter location appears in the Doppler
corrections, so it does play some role, but as we show in this paper the sensitivity of the image to X

E

is low.
This is one advantage of this imaging modality. The other advantage is that the cross correlations suppress
e�ciently atmospheric turbulence e↵ects, as shown in [11, 12]. The images are as good as in homogeneous
media, so the resolution theory presented in this paper applies to imaging through turbulence, when the
receivers fly above it.

We study the resolution of passive imaging with a pair of receivers separated by vector Z, flying at the
same constant velocity V

R

, as illustrated in Figure 1.2. The target range is di�cult to estimate in this setup,
when the receivers are nearby i.e., for |Z| ⌧ H

T

. This is because the range information is almost canceled
out in the di↵erence of the travel times of the reflected signals measured at the two receivers. It is the
target cross-range location that plays the prominent role, and its estimation is determined by the temporal
duration of the pulse, which is of order 1/B. Explicitly, with Z in the cross-range plane, we obtain that the
cross-range resolution in the direction of Z is of order c

o

H
T

/(B|Z|). The limited data gathered by the single
pair of receivers, makes it impossible to localize the target in the other two directions, and also estimate its
velocity. We can only get a linear combination of the relative error of the velocity in the direction of Z and
of the location in range, with precision of order �

o

H
T

/(A
T

|Z|).
To resolve this ambiguity we consider a second pair of nearby receivers. We quantify the gain brought by

the extra measurements, and show that if the two receiver pairs are well separated, it is possible to determine
the target trajectory. That is, determine both its velocity and location.

The paper is organized as follows: We begin in section 2 with the mathematical model of the mea-
surements at the receiver platforms. The imaging functions with a single receiver or a pair of receivers
are described in sections 3 and 4. We also state there the resolution results, and give their derivations in
appendices A and B. In section 5 we present numerical simulations that verify the theoretical resolution
estimates, and also illustrate the sensitivity of the images with respect to the location of the transmitter.
We end in section 6 with a summary of the results.

2. Data model. We assume as in [23] the wave propagation model

1

c2(t,x)

@2u(t,x)

@t2
��u(t,x) = f(t)�(x�X

E

), (2.1)
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for one component u(t,x) of the electromagnetic field, and a time dependent wave speed c(t,x) satisfying

1

c2(t,x)
=

1

c2
o

h
1 + %

T

�
x�X

T

(t)
�i
. (2.2)

Here %
T

is a localized perturbation (with compact support) of the constant background speed c
o

, modeling
the target located at X

T

(t) at time t. The waves are due to the transmitter at X
E

, which emits the probing
pulse

f(t) = F (Bt)e�i!ot + F (Bt)ei!ot = 2F (Bt) cos(!
o

t). (2.3)

The baseband signal F is a real valued function of dimensionless arguments and Fourier transform

bF (!) =

Z 1

�1
dsF (s)ei!s,

supported in the interval [�⇡,⇡]. The frequency !
o

modulation in (2.3) and the scaling of the argument of
F by the bandwidth B gives

bf(!) =
Z 1

�1
dt f(t)ei!t =

1

B


bF
✓
! � !

o

B

◆
+ bF

✓
! + !

o

B

◆�
,

so the frequency support of the emitted pulse is [!
o

� ⇡B,!
o

+ ⇡B] [ [�!
o

� ⇡B,�!
o

+ ⇡B]. We suppose,
as is usual in SAR, that the bandwidth B is much smaller than the central frequency !

o

, moreover, denote
the central wavelength by �

o

= 2⇡c
o

/!
0

.
The wave field u(t,x) is measured at the receiver platform locations X

R

(t). It consists of the direct wave
u
d

, coming straight from X

E

, and the reflected wave u
r

scattered at the target. The setup is as illustrated in
Figures 1.1 or 1.2, with the receiver platforms having two antennas, one pointing down, towards the Earth,
and the other pointing up, so that they can separate the direct and reflected waves. Such wave separation
has already been used in other applications, like seismic exploration [11, 21] or passive fathometry [26].

The mathematical models of u
d

and u
r

, i.e., the component of the signal at the receiver directly trans-
mitted from the source and reflected o↵ the target respectively, are given in the next section, and the Doppler
e↵ects due to the motion of the target and receivers are described in section 2.2.

2.1. The direct and reflected waves. Rather than the full Maxwell’s system of equations we will use
here the simpler scalar wave equation which carries the main features of the scattering problems encountered
in radar applications. The scalar model is frequently used in practice as in the recent book [6] and other
references therein. Let u

o

(t,x) be the solution of the wave equation in the uniform medium,

1

c2
o

@2u
o

(t,x)

@t2
��u

o

(t,x) = f(t)�(x�X

E

), (2.4)

which is given by the expression

u
o

(x, t) =
1

4⇡ |x�X

E

|f
✓
t� |x�X

E

|
c
o

◆
.

We define the direct and reflected waves at the receiver location X

R

(t) by

u
d

(t) = u
o

(t,X
R

(t)) and u
r

(t) = u(t,X
R

(t))� u
o

(t,X
R

(t)). (2.5)

We use equations (2.1) and (2.2), and assume that the target is small (point-like) to derive the mathematical
expressions of u

d

(t) and u
r

(t) stated in the next proposition.

Proposition 2.1. The direct wave is given by

u
d

(t) =
1

4⇡ |X
R

(t)�X

E

|f
✓
t� |X

R

(t)�X

E

|
c
o

◆
, (2.6)
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and the reflected wave is approximately

u
r

(t) ⇡ �
⇢f 00

⇣
⌧(t)� |XT (⌧(t))�XE |

co

⌘

(4⇡)2c2
o

|X
T

(⌧(t))�X

E

||X
R

(t)�X

T

(⌧(t))|
���1 + VT

co
· (D(t)�(t�⌧(t))VT )

|(D(t)�(t�⌧(t))VT |

���
, (2.7)

where ⇢ =
R
dx %

T

(x) is the net target reflectivity,

D(t) = X

T

(0)�X

R

(0) + t(V
T

� V

R

). (2.8)

and

⌧(t) = t� |D(t)|

c
o

✓
1�

���VT

co

���
2

◆

2

4
s

1�
����
V

T

c
o

����
2

+

✓
V

T

c
o

· D(t)

|D(t)|

◆
2

� V

T

c
o

· D(t)

|D(t)|

3

5 . (2.9)

Proof: Since the solution of (2.4) is just the time convolution of the pulse with the Green’s function

G(t,x,y) =
�
⇣
t� |x�y|

co

⌘

4⇡ |x� y| , (2.10)

equation (2.6) follows from definition (2.5). The scattered wave u(t,x)� u
o

(t,x) may be modeled with the
Born approximation, because the target is small. Equations (2.1) and (2.2) give in this approximation that

u(t,x)� u
o

(t,x) ⇡ � 1

c2
o

Z
t

0

d⌧

Z

R3

dyG (t� ⌧,x,y) %
T

(y �X

T

(⌧))
@2

@⌧2
u
o

(⌧,y)

⇡ � ⇢

c2
o

Z
t

0

d⌧ G(t� ⌧,x,X
T

(⌧))
@2

@⌧2
u
o

(⌧,y) |
y=XT (⌧)

.

The first line is obtained in the Born (or single-scattering) approximation and the second line is obtained for
the point-like target approximation. Substituting the expression of u

o

in the right hand side and integrating
by parts twice, we obtain

u(t,x)� u
o

(t,x) ⇡ � ⇢

c2
o

Z
t

0

d⌧

Z
⌧

0

d⌧ 0f 00(⌧ 0)G (⌧ � ⌧ 0,X
T

(⌧),X
E

)G (t� ⌧,x,X
T

(⌧)) .

The reflected wave field follows from definitions (2.5) and (2.10),

u
r

(t) = � ⇢

c2
o

Z
t

0

d⌧
f 00
⇣
⌧ � |XT (⌧)�XE |

co

⌘

4⇡|X
T

(⌧)�X

E

|

�
⇣
t� ⌧ � |XR(t)�XT (⌧)|

co

⌘

4⇡|X
R

(t)�X

T

(⌧)| .

Let us introduce

�(⌧ ; t) = t� ⌧ � |X
T

(0)�X

R

(0) + t(V
T

� V

R

)� (t� ⌧)V
T

|
c
o

,

and use that

� [�(⌧ ; t)] =
�[⌧ � ⌧(t)]

|@
⌧

�(⌧(t); t)| ,

with ⌧(t) the unique zero of the mapping ⌧ ! �(⌧ ; t) in (0, t). This can be found from the quadratic equation

(t� ⌧)2 =
|X

T

(0)�X

R

(0) + t(V
T

� V

R

)� (t� ⌧)V
T

|2

c2
o

.

Choosing the root that is smaller than t, we obtain (2.9). We also have

|@
⌧

�(⌧(t); t)| =
����1 +

V

T

c
o

· [D(t)� (t� ⌧(t))V
T

]

|D(t)� (t� ⌧(t))V
T

|

���� .

Equation (2.7) follows by substituting these results in the expression of u
r

(t) above.
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2.2. Doppler factors. The transmitter emits pulses sequentially, at slow time instances s separated
by �s. We call s slow time because the pulse repetition interval �s is much larger than the travel time of
the waves from the emitter to the target and then to the receiver. The fast time t parametrizes the wave
recordings between each emission, and satisfies 0  t < �s. The result in the next proposition is obtained
using this scale separation. It shows that the direct and reflected waves described in Proposition 2.1 can
be approximated by some geometrical spreading amplitude factors multiplied with the time delayed and
Doppler deformed pulse or its second derivative. This tells us how to synchronize the waves when we form
images in sections 3 and 4.

Proposition 2.2. Let u
d

(s + t) and u
r

(s + t) be the direct and reflected waves defined in Proposition
2.1, for a pulse emitted at slow time s, and fast time t satisfying 0  t < �s. Then, the expressions (2.6)
and (2.7) can be approximated by

u
d

(s+ t) ⇡
f
�
�
d

(s)t� t
d

(s)
�

4⇡|X
R

(s)�X

E

| , (2.11)

and

u
r

(s+ t) ⇡ �
⇢f 00

⇣
�
r

(s,Y
T

,V
T

)t� t
r

(s,Y
T

,V
T

)
⌘

(4⇡)2c2
o

|X
T

(s)|2 , (2.12)

where Y

T

= X
T

(s) � sV
T

is the location of the target at the origin of the slow time. The travel time delay
of the direct arrival is

t
d

(s) = |X
R

(s)�X

E

|/c
o

, (2.13)

and the delay of the reflected arrival is

t
r

(s,Y
T

,V
T

) = |X
T

(s)�X

E

|/c
o

+ �̃
r

(s,Y
T

,V
T

)|X
T

(s)�X

R

(s)|/c
o

. (2.14)

The motion of the receiver causes the following Doppler factor in the direct signal

�
d

(s) = 1� V

R

c
o

·m
RE

(s), m

RE
(s) =

X

R

(s)�X

E

|X
R

(s)�X

E

| , (2.15)

with m

RE
the unit vector pointing from the transmitter to the receiver. There are two Doppler factors in the

reflected signal. The first is for the wave going from the transmitter to the moving target

�̃
r

(s,Y
T

,V
T

) = 1� V

T

c
o

· [m
TE

(s) +m

TR
(s)] , (2.16)

and the second is for the wave going from the transmitter to the target, and then to the receiver

�
r

(s,Y
T

,V
T

) = 1� V

T

c
o

· [m
TE

(s) +m

TR
(s)] +

V

R

c
o

·m
TR

(s). (2.17)

They are both determined by projections of the velocities V

T

and V

R

on the unit vectors

m

TE
(s) =

X

T

(s)�X

E

|X
T

(s)�X

E

| , m

TR
(s) =

X

T

(s)�X

R

(s)

|X
T

(s)�X

R

(s)| . (2.18)

Proof: Equations (2.11) and (2.12) follow from Proposition 2.1 and the following linear (in t) approximations

|X
R

(s+ t)�X

E

| ⇡ |X
R

(s)�X

E

|+ tV
R

· X

R

(s)�X

E

|X
R

(s)�X

E

| ,

|X
T

(s+ t0)�X

E

| ⇡ |X
T

(s)�X

E

|+ t0V
T

· X

T

(s)�X

E

|X
T

(s)�X

E

| ,

|X
T

(s+ t0)�X

R

(s+ t)| ⇡ |X
T

(s)�X

R

(s)|+
�
t0V

T

� tV
R

�
· X

T

(s)�X

R

(s)

|X
T

(s)� |X
R

(s)| .

These are justified in the appendix, were we carry out a detailed multiscale analysis, which takes into account
that |X

T

(t)| � |X
R

(t)|, |X
E

|.
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3. Imaging with one receiver. In this section we present a correlation-based imaging function for
the configuration with one receiver platform. It is similar to the imaging function introduced recently in
[12], except that it takes into consideration the fast motion of the target and receiver using the Doppler
factors in Proposition 2.2. These factors must be estimated locally, because they depend on the locations
of the target and receiver. This motivates us to consider first imaging over a small sub-aperture, and then
form the final image by summing over the sub-apertures. Small apertures are also useful when the target
and receiver have more complicated trajectories than the linear ones assumed here. Such trajectories have
piece-wise linear approximations, for properly calibrated aperture segmentations, as shown in [3].

We take for convenience the observation time window (�T
tot

/2, T
tot

/2), centered at the origin of the slow
time, when the target is located at Y

T

. The observation time T
tot

defines the target and receiver apertures
A

T

and A
R

. We divide them into sub-apertures

a
T

= |V
T

|�S, a
R

= |V
R

|�S,

corresponding to slow time intervals of duration �S. Let N = bT
tot

/�Sc � 1 then we have N + 1 such
intervals centered at S

j

= j�S, for j = �N/2, . . . , N/2. Within each j�th sub-aperture we denote the slow
time by

s
jl

= S
j

+ l�s, l = �n/2, . . . , n/2,

for n = b�S/�sc � 1. Both N and n are assumed even.
The sub-aperture imaging function is discussed in section 3.1. The final image is obtained by summing

over the sub-apertures. We describe its resolution limits in section 3.2. The results are for uniform transla-
tional motion of the target and receiver, and therefore linear trajectories. We address briefly extensions to
general trajectories in section 3.3.

3.1. Small aperture imaging function. The results in Proposition 2.2 show that both the direct
and reflected signals recorded at the receiver platform have the form of the pulse profile (or its second
derivative), time-delayed by travel times and scaled and deformed by Doppler factors. Any matched filter or
correlation-based imaging function must compensate for these Doppler factors, as seen for example in [27]
or [10, 31, 32, 34, 35]. Motivated by this line of research we define our imaging function I

j

(X,V ) for the
j�th aperture as follows:

I
j

(X,V ) =
1

n

n/2X

l=�n/2

Z
�s/2

��s/2

dt u
d

✓
s
jl

+
t+ t

d

(s
jl

)

�
d

(s
jl

)

◆
u
r

✓
s
jl

+
t+ t

r

(s
jl

� S
j

,X,V )

�
r

(s
jl

� S
j

,X,V )

◆
, (3.1)

where X and V are the search vectors for X

T

(S
j

) = Y

T

+ S
j

�S and V

T

. The time integral in (3.1) is
over a duration of at most �s, the pulse repetition interval. In fact, in practice, it would be su�cient for
this duration to be slightly longer than that of f(t), so that we can capture the whole pulse profile even if
the emission times are only approximately known. The sum over l in (3.1) is as usual in synthetic aperture
imaging from repeated probing pulses. However, each term is the cross correlation of the signal received
directly from the transmitter and the reflected signal. Both signals are scaled by their respective Doppler
factors defined in section 2.2.

Proposition 3.1. In the scaling regime

|X
E

|, |X
R

| = O(H
R

), |X
T

| = O(H
T

), H
R

⌧ H
T

, (3.2)

where the target is at high altitude and moves at large speed |V
T

| � |V
R

|, the imaging function (3.1) is large
when the relative errors in the target location and velocity satisfy

���
(X

T

(S
j

)�X)

|X
T

(S
j

)| ·m(S
j

) + E
1

��� = O

✓
c
o

BH
T

◆
, (3.3)

and
����
(V

T

� V )

|V
T

| ·m(S
j

) +
(X

T

(S
j

)�X)

|X
T

(S
j

)| · P(S
j

)V
T

|V
T

| + E
2

���� = O

✓
�
o

a
T

◆
. (3.4)
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Here the unit vector

m(S
j

) =
X

T

(S
j

)

|X
T

(S
j

)| (3.5)

defines the range direction for the sub-aperture, pointing toward the location of the target, and

P(S
j

) = I�m(S
j

)m(S
j

)T (3.6)

is the orthogonal projection on the cross-range plane orthogonal to m(S
j

) (I is the 3 ⇥ 3 identity matrix).
The residuals in the estimates (3.3) and (3.4) are

E
1

=

✓
X

E

2|X
T

(S
j

)| +
X

R

(S
j

)

2|X
T

(S
j

)|

◆
· P(S

j

)(X
T

(S
j

)�X)

|X
T

(S
j

)| , (3.7)

and

E
2

=

✓
X

E

2|X
T

(S
j

)| +
X

R

(S
j

)

2|X
T

(S
j

)|

◆
· P(S

j

)(V
T

� V )

|V
T

| +
V

R

|V
T

| ·
P(S

j

)(X
T

(S
j

)�X)

|X
T

(S
j

)| . (3.8)

They play a minor role because they are determined by the relative errors in the target location and velocity,
multiplied by small factors of order O(H

R

/H
T

) and O(|V
R

|/|V
T

|), respectively.
The resolution limits (3.3) and (3.4) are derived in appendix A, where we carry out a detailed multiscale

analysis of the imaging function (3.1).
Equation (3.3) is due to the inaccuracy of the travel time estimation, which is of the order of 1/B, the

temporal duration of the probing pulse. Because the source and receiver locations are known, the travel time
that plays a role in (3.1) is from the transmitter at X

E

to the target at X
T

and then back to the receiver
at X

R

. By assumption (3.2) this time is approximately 2H
T

/c
o

, and

H
T

⇡ X

T

(S
j

) ·m(S
j

).

Thus, we can estimate the range with a precision of order c
o

/B, as stated in (3.3). This is the classic Rayleigh
range resolution limit.

Equation (3.4) is obtained by the coherent summation of the time synchronized cross-correlations over
the sub-aperture a

T

. It involves the linear combination of the relative errors of the range velocity and the
cross-range target location. It is a marginal resolution result because it allows us to estimate either the
velocity or the location, but not both:

- If we fix the search location X at the target cross-range, we get
����
(V

T

� V )

|V
T

| ·m(S
j

)

����  O

✓
�
o

a
T

◆
. (3.9)

This is an excellent estimate of the velocity of the target in the range direction, that amounts to a sub-
wavelength error of the target trajectory over the sub-aperture a

T

.
- If we fix the range velocity at the correct value, we get

����(XT

(S
j

)�X) · P(S
j

)V
T

|V
T

|

����  O

✓
�
o

H
T

a
T

◆
. (3.10)

Because V

T

is horizontal,

P(S
j

)V
T

⇡ V

T

,

so (3.10) is the expected Rayleigh cross-range resolution formula for ISAR, with synthetic aperture a
T

determined by the motion of the target. It says that the target location along the direction of the flight path
is determined by the wavelength multiplied by the ratio of the target range and the aperture.
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The target location in the direction orthogonal to V

T

is practically impossible to determine from I
j

. It
appears only in the residuals E

1

and E
2

, and to see it we need to cancel the leading terms in equations (3.3)
and (3.4). For example, if we knew the range location of the target, we could get from (3.3) and (3.7) some
cross-range estimate of the order c

o

H
T

/(BH
R

). Otherwise, if we knew the target velocity and its cross-range
location along the trajectory, and if V

R

were orthogonal to V

T

, we could get from (3.4) and (3.8) that

����(XT

(S
j

)�X) · P(S
j

)V
R

|V
R

|

���� ⇡
����(XT

(S
j

)�X) · V

R

|V
R

|

����  O

✓
�
o

H
T

a
R

◆
. (3.11)

This is the Rayleigh resolution formula for SAR, with synthetic aperture a
R

determined by the motion of
the receiver. The estimate is worse for other orientations of V

R

.

3.2. Imaging with a large aperture. We sum coherently the small aperture imaging functions (3.1)
over j to form the full aperture imaging function:

I(Y ,V ) =

N/2X

j=�N/2

I
j

(Y + S
j

V ,V ), (3.12)

Because the target has a linear trajectory, we have X

T

(S
j

) = Y

T

+ S
j

V

T

, and the search points X satisfy
similarly X = Y + S

j

V . The unknowns are Y

T

and V

T

, which is why we parametrize the images (3.12) by
the search location Y and velocity V .

It is di�cult to derive analytically the resolution limits of I for arbitrarily large synthetic aperture A
T

defined by the motion of the target. However, when A
T

⌧ H
T

, all the range directions are approximately
aligned with Y

T

,

m(S
j

) =
Y

T

+ S
j

V

T

|Y
T

+ S
j

V

T

| ⇡ m(0) =
Y

T

|Y
T

| ,

and |Y
T

| ⇡ H
T

. Then, we show in appendix A.4 that I(Y ,V ) is large when

|(Y
T

� Y ) ·m(0)|  O
⇣c

o

B

⌘
, (3.13)

and
����
V

T

� V

|V
T

| ·m(0) +
V

T

|V
T

| ·
P(0)(Y

T

� Y )

|Y
T

|

����  O

✓
�
o

A
T

◆
. (3.14)

The sum over the sub-apertures does not a↵ect the range estimate (3.13), which stays of order c
o

/B, but it
improves the estimate (3.14) because A

T

� a
T

.
Additionally, if Y = Y

T

and (V � V

T

) ·m(0) = 0, then it is shown in appendix A.4 that I(Y
T

,V ) is
large when

����
V

T

� V

|V
T

| · V

T

|V
T

|

����  O

✓
�
o

H
T

A2

T

◆
. (3.15)

Note that even with the large aperture the imaging function with a single transmitter and receiver
platform cannot determine both the target location and velocity. Moreover, all the information is restricted
to the plane spanned by Y

T

and V

T

. These ambiguities are expected and are as in active monostatic SAR
systems, because the data are two-dimensional, parametrized by the slow time (location of the receiver) and
the fast time. More measurements are needed to resolve these ambiguities, either from multiple transmitters
or receivers, separated by large distances of the order of H

T

, as explained in section 4.

3.3. Extensions to general trajectories. Our simplifying assumption of constant velocity of the
target and receiver can be relaxed to account for more general motion. Suppose that the target has a
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deterministic trajectory, determined by the gravitational force and its initial location X

in

T

and velocity V

in

T

.
Then, (X

T

(s),V
T

(s)) is the unique solution of the di↵erential equation

d

ds

✓
X

T

(s)
V

T

(s)

◆
=

 
V

T

(s)

� g

m

XT (s)

|XT (s)|

!
, s 2 (�T

tot

/2, T
tot

/2),

with initial condition

X

T

(�T
tot

/2) = X

in

T

, V

T

(�T
tot

/2) = V

in

T

,

where g is the gravitational acceleration and m is the mass of the target.
When imaging, we can approximate such a trajectory as piecewise linear, using appropriate aperture

segmentation, as in [3]. This amounts to taking constant velocities V
T

(S
j

) and V

R

(S
j

) in each sub-aperture.
The results in Proposition 3.1 extend verbatim to this case. Moreover, the sub-aperture results can be
combined in the large aperture function

I(X in,V in) =

N/2�1X

j=�N/2+1

I
j

(X(S
j

;X in,V in),V (S
j

;X in,V in)).

It searches at X in and V

in

T

the initial location and velocity of the target, and the arguments in the sum are
defined by the piecewise linear flow

X(s+ S
j

;X in,V in) = X(S
j

;X in,V in) + (s� S
j

)V (S
j

;X in,V in), s 2 (S
j

, S
j

+�S),

with

V (S
j

;X in,V in) = V (S
j�1

;X in,V in)� g�S

m

X(S
j�1

;X in,V in)

|X(S
j�1

;X in,V in)| ,

for j = �N/2 + 1, . . . , N/2, and

X(S�N/2

;X in,V in) = X

in, V (S�N/2

;X in,V in) = V

in.

Recall that the receiver location and velocity are assumed known.

4. Imaging with multiple receiver platforms. In this section we describe the imaging function
with multiple receiver platforms. We begin in section 4.1 with one pair of receivers, flying in tandem, and
then describe in section 4.2 the result for two pairs of receivers. We assume throughout the section that the
target and receivers travel at constant speeds.

4.1. One pair of receivers. Let us consider a pair of receivers flying side by side, at the same constant
velocity V

R

. They are located at X

R

(s) and X

Z

R

(s) = X

R

(s) + Z, with constant o↵set vector Z for all
s 2 (�T

tot

/2, T
tot

/2). We study imaging in the scaling regime

|X
E

|, |X
R

|, |Z| = O(H
R

), |X
T

| = O(H
T

), H
R

⌧ H
T

, (4.1)

which is similar to that in the one receiver case, with the additional scale |Z| that is at most of the order
of the receiver height. The model of the data recorded at the first receiver is as in Proposition 2.2. For the
second receiver we have a similar model, and we denote by uZ

r

the reflected signal recorded by it. It depends
on the Doppler factors �Z

r

and �̃Z
r

and the delay time tZ
r

, resulting from the replacement of X
R

by X

R

+Z

in the formulas in Proposition 2.2.
The imaging function for the j�th sub-aperture is

I
j

(X,V ) =
1

n

n/2X

l=�n/2

Z
�s/2

��s/2

dt u
r

✓
s
jl

+
t+ t

r

(s
jl

� S
j

,X,V )

�
r

(s
jl

� S
j

,X,V )

◆
uZ

r

✓
s
jl

+
t+ tZ

r

(s
jl

� S
j

,X,V )

�Z
r

(s
jl

� S
j

,X,V )

◆
.

(4.2)
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It di↵ers from the imaging function (3.1) in the previous section by the fact that it uses cross correlations
of the reflected signals measured by the two receivers. This is important for at least two reasons: First,
it leads to new resolution results that are no longer like the classic Rayleigh resolution limits, as stated
in the next proposition. Second, the cross correlations in (4.2) essentially remove the wave propagation
e↵ects from the transmitter to the receivers. This is why the image (4.2) is not a↵ected by wave distortions
caused by scattering in the turbulent atmosphere below the receivers, and it is only weakly sensitive to
knowledge of the transmitter location. We do not consider atmospheric turbulence in this paper, but refer
to [11] and [13, Chapter 10] for studies of robustness of this type of passive imaging in scattering media.
The robustness with respect to the knowledge of X

E

is illustrated with numerical simulations in section 5.
A passive imaging functional which is similar to (4.2) has been introduced and studied in [29] and [30] for
imaging and estimating the velocity of ground moving targets. In this case the scattered waves are due to
transmitters of opportunity, such as cell phone towers. The analysis in the imaging configuration considered
here is di↵erent and reveals the significant e↵ect of the inverse SAR aperture due the high speed of the
moving object (satellite).

Proposition 4.1. Under the scaling assumptions (4.1) and for |V
T

| � |V
R

|, the imaging function (4.2)
is large when the following two conditions are fulfilled:

����
P(S

j

)Z

|Z| · (XT

(S
j

)�X)

|X
T

(S
j

)| + E
3

����  O

✓
c
o

B|Z|

◆
, (4.3)

and
����
P(S

j

)Z

|Z| · (VT

� V )

|V
T

| �
Zk

|Z|m(S
j

) · (XT

(S
j

)�X)

|X
T

(S
j

)| + E
4

����  O

✓
�
o

H
T

a
T

|Z|

◆
. (4.4)

Here Zk = Z ·V
T

/|V
T

|, is the projection of the receiver o↵set on the direction of the target trajectory, m(S
j

)
is the unit vector (3.5) that defines the range direction, and P(S

j

) is the orthogonal projection on the cross-
range plane (3.6). The residuals E

3

and E
4

play a minor role, and are determined by the relative errors of
the target location and velocity, multiplied by small factors of order H

R

/H
T

and |V
R

|/|V
T

|.
The derivation of the resolution limits (4.3) and (4.4) is in appendix B.
Equation (4.3) is due to the inaccuracy of the travel time estimation, of the order of the duration 1/B

of the probing pulse. Because the image (4.2) is formed with cross correlations of the reflected signals at
the two receivers, the di↵erence of the travel times of these signals comes into play. The receiver separation
is much smaller than the range of the target by scaling assumption (4.1), so the range information almost
cancels out in this di↵erence. This is why we can only determine the cross-range location of the target, as
stated in (4.3).

The estimate (4.4) is due to the summation over the sub-apertures. It di↵ers from the estimate (3.4)
obtained in the one receiver case in two ways: First, (3.4) involves the range velocity and cross-range target
location, whereas in (4.4) we have the cross-range velocity and the range target location, each multiplied
by projections of the unit vector Z/|Z|. Second, the error bound in (4.4) is worse than in (3.4), by a large
factor of order H

T

/|Z|.
It is clear from (4.3) and (4.4) that the best estimates are obtained with o↵set vectors Z that are in the

cross-range plane, which is basically horizontal in our case. Then, we can write

P(S
j

)Z ⇡ Z,

and obtain from (4.3) that the target location can be estimated along the direction of Z, with a resolution
of order c

o

H
T

/(B|Z|). This is the counterpart of result (3.3) in the one receiver case, but the estimate is
worse due to the large factor H

T

/|Z|.
Equation (4.4) involves the linear combination of the relative error of the target velocity along Z, and

the relative error of the target location along range. If we knew V

T

, the best orientation of Z would be along
the target trajectory, and we would get the range resolution

|(X
T

(S
j

)�X) ·m(S
j

)|  O

✓
�
o

H2

T

a
T

|Z|

◆
. (4.5)
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This is the counterpart of result (3.10) in the one receiver case, but the estimate is worse by the large factor
H

T

/|Z|. Of course, in general |V
T

| is not known, and we cannot separate the two errors in (4.4), unless
Z is orthogonal to V

T

. In that case (4.4) gives a relative error of the cross-range velocity in the direction
orthogonal to the receiver flight paths.

The large aperture images are obtained as in the one-receiver case by summing coherently the sub-
aperture images (4.2). The expression of the imaging function is as in (3.12) and the parametrization is by
Y and V , the search vectors for the target location Y

T

at the reference slow time s = 0 and the target
velocity V

T

. Again, the coherent summation gives better results, and in the scaling A
T

⌧ H
T

we can derive
analytically the resolution limits. We obtain that I(Y ,V ) is large when

����
P(0)Z

|Z| · (YT

� Y )

|Y
T

|

����  O

✓
c
o

B|Z|

◆
, (4.6)

and
����
P(0)Z

|Z| · (VT

� V )

|V
T

| �
Zk

|Z|m(0) · (YT

� Y )

|Y
T

|

����  O

✓
�
o

H
T

A
T

|Z|

◆
. (4.7)

Here we neglected the residuals, and note the large aperture improvement in (4.7).

4.2. Two pairs of receivers. The results in the previous section show that it is impossible to determine
with a single transmitter and a single receiver pair both the location of the target and its velocity. Thus, we
consider here an additional pair of receivers and discuss how the added measurements improve the imaging.

We maintain the assumption 4.1 for the first pair of receivers, and suppose that A
R

⌧ A
T

⌧ H
T

, so
that we can derive analytically the focusing conditions of the large aperture imaging functions. The second
pair of receivers also flies in tandem, at constant velocity Ṽ

R

and altitude H̃
R

that may be di↵erent than
V

R

and H
R

, but satisfy

|Ṽ
R

| = O(|V
R

|) ⌧ |V
T

|, H̃
R

= O(H
R

) ⌧ H
T

. (4.8)

We denote their locations at slow time s by X̃

R

(s) and X̃

Z

R

(s), and their o↵set vector by Z̃.
Since there are four receiver platforms, we can form images with cross-correlations of the reflected signals

measured by any two of them. For our purpose it su�ces to consider three complementary images obtained
with the first pair of receivers, the second pair, and across pairs, with the receivers at X

R

and X̃

R

. We
begin as in the previous section with the small aperture images, and then sum them coherently over the
large apertures.

The sub-aperture image I
j

(X,V ) obtained with the first pair of receivers is described in Proposition 4.1.
We restate its resolution limits here in simpler form, by neglecting the residuals and using the approximation

m(S
j

) =
X

T

(S
j

)

|X
T

(S
j

)| ⇡
Y

T

|Y
T

| = m(0), P(S
j

) = I�m(S
j

)m(S
j

)T ⇡ I�m(0)m(0)T = P(0), (4.9)

justified by assumption A
T

⌧ H
T

. We obtain that I
j

(X,V ) is large when
����
P(0)Z

|Z| · (XT

(S
j

)�X)

|X
T

(S
j

)|

����  O

✓
c
o

B|Z|

◆
, (4.10)

and
����
P(0)Z

|Z| · (VT

� V )

|V
T

| �
Zk

|Z|m(0) · (XT

(S
j

)�X)

|X
T

(S
j

)|

����  O

✓
�
o

H
T

a
T

|Z|

◆
. (4.11)

The resolution of the large aperture image I is as stated in (4.6) and (4.7).
To explain the improvement brought by the extra measurements we consider two cases: The first is for

nearby pairs of receivers, so that

|X̃
R

�X

R

|, |X̃
R

|, |Z̃| = O(H
R

) ⌧ H
T

, (4.12)

and the second is for well separated pairs, so that

|X̃
R

�X

R

| = O(H
T

), |Z̃| = O(H
R

) ⌧ H
T

. (4.13)
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4.2.1. Nearby pairs of receivers. When all the receivers are nearby, as described by (4.1) and (4.12),
the resolution analysis of the image Ĩ

j

(X,V ) formed with the second pair of receivers is the same as in
appendix B. Moreover, the range direction from X̃

R

(S
j

) and X̃

Z

R

(S
j

) to X

T

(S
j

) is almost aligned with
m(0), so we can state the resolution limits by obvious modifications of equations (4.10) and (4.11). We
obtain that Ĩ

j

(X,V ) is large when

�����
P(0)Z̃

|Z̃|
· (XT

(S
j

)�X)

|X
T

(S
j

)|

�����  O

✓
c
o

B|Z̃|

◆
, (4.14)

�����
P(0)Z̃

|Z̃|
· (VT

� V )

|V
T

| �
Z̃k

|Z̃|
m(0) · (XT

(S
j

)�X)

|X
T

(S
j

)|

�����  O

✓
�
o

H
T

a
T

|Z̃|

◆
, (4.15)

where Z̃k = Z̃ ·V
T

/|V
T

|. These results show, as in the previous section, that the best scenario is when Z̃ is
almost horizontal. Then, the estimates (4.10) and (4.14) are complementary, as they determine the location
of the target along the o↵set vectors Z and Z̃. If these point in di↵erent directions in the horizontal plane,
they localize the target in cross-range with resolution of the order c

o

H
T

/(BH
R

), where we used that both
|Z| and |Z̃| are O(H

R

).
The estimates (4.11) and (4.15) are also complementary, but they are not su�cient to determine both

the target velocity and its range location. Moreover, the sub-aperture image Ĭ
j

(X,V ) obtained with the

receivers at X
R

and X̃

R

does not bring much improvement. The resolution analysis of Ĭ
j

(X,V ) is similar
but not the same as in appendix B, unless V

R

= Ṽ

R

. However, since these velocities are much smaller than
V

T

, the results coincide to leading order. We have that Ĭ
j

(X,V ) is large when

�����
P(0)Z̆(S

j

)

|Z̆(S
j

)|
· (XT

(S
j

)�X)

|X
T

(S
j

)|

�����  O

 
c
o

B|Z̆(S
j

)|

!
, (4.16)

�����
P(0)Z̆(S

j

)

|Z̆(S
j

)|
· (VT

� V )

|V
T

| �
Z̆k(Sj

)

|Z̆|
m(0) · (XT

(S
j

)�X)

|X
T

(S
j

)|

�����  O

 
�
o

H
T

a
T

|Z̆(S
j

)|

!
, (4.17)

where

Z̆(S
j

) = X̃

R

(S
j

)�X

R

(S
j

), (4.18)

and Z̆k = Z̆ · V
T

/|V
T

|. The first estimate does not bring any additional information on the target location,
as it still involves the projection on the cross-range plane. The second equation does not help either, because
it still involves the linear combination of the cross-range velocity error and range target location error.

The analysis of the large aperture image Ĩ obtained by the coherent summation of Ĩ
j

is like that of
I, and its resolution limits are given by (4.6) and (4.7), with Z replaced by Z̃. The large aperture does
not improve the localization of the target in cross-range, which remains of the order c

o

H
T

/(BH
R

), but it
sharpens the estimate (4.15), by replacing a

T

with A
T

.
The analysis of the large aperture Ĭ image obtained by the coherent summation of Ĭ

j

is di↵erent when
V

R

6= Ṽ

R

, but again in the scaling of this section, and for A
T

⌧ H
T

, the results remain similar to leading
order.

4.2.2. Well separated pairs of receivers. The setup described by the scaling assumptions (4.1) and
(4.13) is better for imaging, due to the large separation between the receivers. We use the same notation as
above, with pair separation Z̆ defined in (4.18), and state directly the results, without giving the details of
the resolution analysis that is very similar to that in appendix B.

The change for the image Ĩ
j

comes from the fact that the second pair of receivers views the target from
a di↵erent direction, which is approximately

m̃(S
j

) =
X

T

(S
j

)� Z̆(S
j

)

|X
T

(S
j

)� Z̆(S
j

)|
⇡ m̃(0) =

Y

T

� Z̆(0)

|Y
T

� Z̆(0)|
, (4.19)
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with Z̆ defined in (4.18). The resolution limits are like in (4.14) and (4.15), but with m replaced by m̃ and
the projection P replaced by P̃ = I� m̃m̃

T .
Similarly, the resolution limits of the image Ĭ

j

are like in (4.16) and (4.17), but with m replaced by

m̆ = (m+ m̃) /2, and the projection P replaced by P̆ = (P+ P̃)/2.
We conclude that the three images give di↵erent views of the target, from three linearly independent

range directions m(0), m̃(0) and m̆(0), and therefore in three di↵erent cross-range planes. More explicitly,
the six resolution equations of the three images give independent error estimates of the six unknowns: the
components of the target location and velocity. Thus, we can image the target and estimate its velocity with
the two pairs of receivers.

5. Parameter regime and numerical results. In this section we present numerical simulations that
verify the resolution results stated in sections 3 and 4. The setup is as illustrated in Figures 1.1 and 1.2, with
a point target located at the reference slow time s = 0 at Y

T

= (0, 0, H
T

), with H
T

= 500 km. The target
moves with constant speed V

T

= (0, V
T

, 0), and we consider two values of V
T

: either 7610m/s or 3805m/s.
The target motion defines a synthetic aperture A

T

= V
T

T
tot

over the duration T
tot

of the data gather. We
consider di↵erent values of T

tot

, to illustrate the e↵ect of the aperture on the resolution of the images.
The data for the direct field are generated using a discretization in time of (2.6) while the data for the

reflected field are computed by a discretization of (2.7). The probing pulse used in the numerical simulations
is

f(t) = cos(2⇡f
o

t) exp
⇣
� B2t2

2

⌘
,

with the central frequency f
o

= 9.6GHz and the bandwidth B = 622MHz. This gives the central wavelength
�
o

= 3 cm. The pulse repetition rate is �s = 0.015 s. The probing pulses are emitted from a transmitter on
the ground, at position X

E

= (5, 5, 0)m.
In the setup with a single receiver platform, this is located at Y

R

= (0, 0, H
R

) at s = 0, with H
R

= 20 km.
It moves with the constant velocity V

R

= (V
R

, 0, 0), which is orthogonal to V

T

, with V
R

= 222m/s. Over
the duration T

tot

, the receiver defines the synthetic aperture A
R

= V
R

T
tot

.
In the setup with a pair of receivers, they move at the same speed V

R

that may be orthogonal or parallel
to V

T

, with |V
R

| = 222m/s. One receiver is located at Y
R

�Z/2, with Y

R

given above, and the other one
at Y

R

+ Z/2. When V

R

= (V
R

, 0, 0) is orthogonal to V

T

, the receivers are o↵set by Z = (0, Z, 0). When
V

R

= (0, V
R

, 0) is along V

T

, the o↵set is Z = (Z, 0, 0). In either case we let Z = 50 km or 100 km.
The cross-correlations are computed in the time domain by discretizing the expressions of the imaging

functionals (3.1) and (4.2) using the Simpson rule. To generate the images we fix four out of the six variables
to their correct values and we compute the image as a function of the remaining two variables.

Remark 1. The numerical simulations are in the X-band regime. The currently planned Space Surveil-
lance System [15] is in the S-band regime, with central frequency of 2GHz, which gives a 15 cm wavelength.
The resolution limits in this section can be converted to the S-band system by changing the 3 cm wavelength
to 15 cm and the bandwidth from 622MHz to around 125MHz.

5.1. Imaging results with one receiver. We illustrate here the resolution results of imaging with
the single receiver platform. As explained in section 3, it is impossible to determine all six unknowns (the
coordinates of Y

T

and components of V
T

) from the data gathered by the receiver. Thus, we display two-
dimensional cross-sections of the images, corresponding to four unknowns fixed at the correct values. To
illustrate the e↵ect of the target speed and therefore synthetic aperture A

T

on the resolution, we present
results for two values of V

T

: 7610m/s and 3805m/s. We also consider two durations T
tot

of the experiment:
22.5 s and 10.5 s. These give two di↵erent values of the synthetic aperture A

R

defined by the receiver motion
at speed V

R

= 222m/s.
Note that at the largest target speed V

T

= 7610m/s, and the longest duration T
tot

= 22.5 s, the opening
angle of the cone defined by the moving target is

arctan

✓
A

T

2H
T

◆
= 9.2o.
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Thus, the range direction perceived from any point along the trajectory remains almost vertical in the
simulations. We use the usual coordinate system with the first two coordinates in the horizontal (cross-
range) plane, and the third in the vertical direction.

In Figure 5.1 we plot the cross-section of the image I(Y ,V ) in the plane (V
1

, V
2

). As expected from the
theory, the cross-range velocity V

1

cannot be estimated, while the cross-range velocity V
2

can be estimated
with an accuracy of the order of �

o

V
T

H
T

/A2

T

, that is, 0.018m/s for T
tot

= 10.5 s, V
T

= 7610m/s and
0.036m/s for T

tot

= 10.5 s, V
T

= 3805m/s, which is indeed what is observed in the figure.
The estimation of the velocity in the range direction (V

3

) can be extracted from Figure 5.2 where we
plot the the cross-section of the image I(Y ,V ) in the plane (V

1

, V
3

). The numerical results are in agreement
with equation (4.7) which shows that the range velocity V

T,3

can be estimated with an accuracy of the order
of �

o

/T
tot

, which equals 2.9 10�3 m/s for the shorter duration T
tot

= 10.5 s, and 1.3 10�3 m/s for the longer
one.

V
T

= 7610m/s V
T

= 3805m/s

T
t
o
t

=
10
.5
s

T
t
o
t

=
22
.5
s

Figure 5.1. One-receiver result: Cross-section of the image I(Y ,V ) in the plane (V
1

, V
2

). The origin corresponds to the
true values, which are V

1

= 0 and V
2

= V
T

. The abscissa is for V
1

and the ordinate for V
2

. The units are in m/s. The target
velocity is V

T

= 7610m/s in the left column, and 3805m/s in the right column. The first row is for the duration T
tot

= 10.5 s
and the second for 22.5 s. According to the theory V

1

cannot be accurately estimated, while the cross-range velocity V
2

can
be estimated with an accuracy of the order of �

o

V
T

H
T

/A2

T

, that is in particular 0.018m/s for T
tot

= 10.5 s, V
T

= 7610m/s,
which is supported by the results in the figure.

Figure 5.3 shows the cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
2

). Equations (3.4), (3.8)
and (4.7) predict that it is di�cult to estimate the location Y

T,1

of the target. This is confirmed by the
figure, where we see no focusing of the image in Y

1

, except an oblique line indicating some sensitivity to
Y
T,1

. However, we can locate the target along the direction of its trajectory (i.e., Y
T,2

) with a resolution of
the order of �

o

H
T

/A
T

. This equals 0.09m in the case of V
T

= 7610m/s and T
tot

= 22.5 s, and corresponds
to what we see in the figure, up to some factor of order one.

Figure 5.4 shows the cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
3

). Because we fix here
V = V

T

and Y
2

= Y
T,2

, we can observe the focusing along Y
1

. This is the cross-range direction orthogonal
to V

T

, which is along V

R

in the simulation. Equation (3.11) predicts that the resolution along Y
1

should
be of the order of �

o

H
T

/A
R

, which equals 3.2m when T
tot

= 22.5 s. This is what the figure gives, up to a
factor of order one. The estimate of the target range is expected to be of the order of c

o

/B, which equals
0.48m. It corresponds to the resolution in the figure, up to a factor of order one. Note how the resolution
along Y

1

improves when we increase the duration T
tot

, whereas the resolution along Y
3

stays the same. This
is exactly what the theory predicts.

In Figure 5.5 we show the the cross-section of the image I(Y ,V ) in the plane (Y
2

, Y
3

). The focusing
along Y

3

is the same as in Figure 5.4 and the cross-range focusing as in Figure 5.3. This is the optimal target
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V
T

= 7610m/s V
T

= 3805m/s

T
t
o
t

=
10
.5
s

T
t
o
t

=
22
.5
s

Figure 5.2. One-receiver result: Cross-section of the image I(Y ,V ) in the plane (V
1

, V
3

). The origin corresponds to
the true values, which are zero. The abscissa is for V

1

and the ordinate for V
3

. The units are in m/s. The target velocity is
V
T

= 7610m/s in the left column, and 3805m/s in the right column.The first row is for the duration T
tot

= 10.5 s and the
second for 22.5 s. According to the theory V

1

cannot be accurately estimated, while V
3

can be estimated with an accuracy of the
order of �

o

/T
tot

, which equals 2.9 10�3 m/s for the shorter duration T
tot

= 10.5 s, which conforms well with the results in the
figure.

unknown estimation theory
V
T,1

poorly determined poorly determined

V
T,2

0.013m/s
�
o

V
T

H
T

A2

T

(0.01m/s)

V
T,3

0.002m/s
�
o

T
tot

(0.002m/s)

Y
T,1

poorly determined poorly determined

Y
T,2

0.1m
�
o

H
T

A
T

(0.13m)

Y
T,3

0.4m
c
o

B
(0.48m)

Table 5.1

Resolution summary for one-receiver platform when T
tot

= 15 s and V
T

= (0, V
T

, 0) with V
T

= 7610m/s. Recall that
A

T

= V
T

T
tot

.

localization possible in the one-receiver imaging modality, but it requires knowing the target velocity.

To better assess the resolution we plot in Figure 5.6 the corresponding one-dimensional slices of the
two-dimensional plots obtained by fixing one of the two variables to the correct value. The plots are for the
target velocity is V

T

= (0, V
T

, 0) with V
T

= 7610m/s, and the duration T
tot

of the experiment is 15 s and
illustrate better the relative magnitude of the side lobes.

We summarize these resolution results in Table 5.1, for the case V
T

= 7610m/s and T
tot

= 15 s. In
the next section we consider the two-receiver case and we summarize the associated resolution results in the
corresponding Table 5.2 below.

Remark 2. Given the high number of unknowns in our problem we have chosen to illustrate the imaging
results on two-dimensional cross-sections by fixing four out of the six unknowns to their correct values.
These images do not allow to fully characterize the imaging function. The theoretical analysis carried out
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V
T

= 7610m/s V
T

= 3805m/s

T
t
o
t

=
10
.5
s

T
t
o
t

=
22
.5
s

Figure 5.3. One-receiver result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
2

). The origin corresponds to
the true values, which are zero. The abscissa is for Y

1

and the ordinate for Y
2

. The units are in m. The target velocity is
V
T

= 7610m/s in the left column, and 3805m/s in the right column.The first row is for the duration T
tot

= 10.5 s and the
second for 22.5 s. According to the theory Y

1

cannot be estimated well, however, we can estimate Y
2

with a resolution of the
order of �

o

H
T

/A
T

. This equals 0.09m in the case of V
T

= 7610m/s and T
tot

= 22.5 s, which is roughly what is seen in the
figure.

in Sections 3 and 4 concerns the resolution of the imaging system and assumes that the targets are point
like. The analysis is not restricted to the planar two-dimensional cross-sections and fully characterizes the
imaging function’s resolution. However, the imaging function being rather complicated, it is di�cult to obtain
a full analytic expression for the point spread function that will shed light on its complete behavior and the
existence of possible sidelobes. The numerical simulations are complementary to the theory and give us a
better understanding of the point spread function. We see for example in Figure 5.5 that in the plane Y

2

�Y
3

there are sidelobes in the Y
3

direction that are stronger than the ones in the Y
2

direction. The joint theoretical
and numerical analysis shows the potential, and allows to assess the advantages and the limitations of such
passive imaging systems.

5.2. Imaging results with two receivers. We illustrate first the resolution theory of section 4.1 for
imaging with a pair of receivers, and then consider two pairs of receivers, to illustrate the image improvement
described in section 4.2. The analysis is for nearby receivers in the pair, with o↵set satisfying |Z| ⌧ H

T

.
The simulations are in this setting, specially when |Z| = 50 km, so that |Z|/H

T

= 0.1. The larger o↵set
|Z| = 100 km, where |Z|/H

T

= 0.2, is a borderline case. It allows us to illustrate the e↵ect of increasing the
receiver o↵set.

All the results displayed in this section are for the target velocity V

T

= (0, V
T

, 0) with V
T

= 7610m/s.
We vary the aperture A

T

= V
T

T
tot

by taking two durations T
tot

: 10.5 s and 22.5 s. The receivers fly at speed
V

R

with magnitude |V
R

| = 222m/s, which is in the horizontal plane, either parallel to V

T

or orthogonal to
it. The receiver o↵set vector Z is also in the horizontal plane and orthogonal to V

R

.
We begin with Figures 5.7 and 5.8, obtained for V

R

? V

T

, and therefore Z parallel to V

T

. Figure 5.7
displays the cross-section of the image I(Y ,V ) in the plane (Y

1

, Y
3

), and Figure 5.8 in the plane (Y
1

, Y
2

).
We expect from equation (4.7) a range resolution of the order of �

o

H2

T

/(A
T

Z), which equals 1.8m in the
case T

tot

= 10.5 s and Z = 50 km, and 0.9m when T
tot

= 10.5 s and Z = 100 km. This is consistent with the
results in Figure 5.7, where we see improved focusing in range when we increase either T

tot

and therefore
A

T

, or Z. The range resolution is about the same for the double o↵set (middle plot) or the double aperture
(right plot), as expected.

Equation (4.6) predicts no resolution along Y
1

and a resolution along Y
2

of the order of c
o

H
T

/(BZ),
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V
T

= 7610m/s V
T

= 3805m/s

T
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t

=
10
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s

T
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t

=
22
.5
s

Figure 5.4. One-receiver result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
3

). The origin corresponds to the
true values, which are Y

1

= 0 and Y
3

= 500 km. The abscissa is for Y
1

and the ordinate for Y
3

. The units are in m. The target
velocity is V

T

= 7610m/s in the left column, and 3805m/s in the right column.The first row is for the duration T
tot

= 10.5 s
and the second for 22.5 s. According to the theory the Y

1

estimate accuracy should be of the order of �
o

H
T

/A
R

, which equals
3.2m when T

tot

= 22.5 s, while the estimate of the target range Y
3

is expected to be of the order of c
o

/B, which equals 0.48m,
which conforms well with the results in the figure.

while the last term in the left-hand side in (4.4) also gives a resolution in Y
2

which may be better than (4.6).
Indeed it gives |�Y

2

| < �
o

H3

T

/(A2

T

Z). So that the Y
2

resolution becomes

|�Y
2

| < min
�
�
o

H3

T

/(A2

T

Z), c
o

H
T

/(BZ)
�
.

For the results shown in Figure 5.8 the minimum is �
o

H3

T

/(A2

T

Z) which equals 2.6m for Z = 50 km and
1.3m for Z = 100 km. This is consistent with the results in Figure 5.8, where we note the improvement in
the focusing along Y

2

for the larger o↵set Z. Increasing the aperture A
T

by considering larger T
tot

= 37.5 s
in Figure 5.9 also improves the resolution along Y

2

as expected from the theory.
We also plot in Figure 5.10 the cross-section of the image I(Y ,V ) in the plane (V

1

, V
2

). Equation (4.3)
suggests that we should not expect any resolution along V

1

while for the velocity component V
2

which is
along Z we expect a resolution of the order of �

o

H
T

/(T
tot

Z) and this is indeed what we observe numerically.

unknown estimation theory
V
T,1

not determined not determined

V
T,2

0.01m/s
�
o

H
T

T
tot

Z
(0.008m/s)

V
T,3

not determined not determined
Y
T,1

not determined not determined

Y
T,2

1.5m min
⇣�

o

H3

T

A2

T

Z
,
c
o

H
T

BZ

⌘
(1.6m)

Y
T,3

0.3m
�
o

H2

T

V
T

T
tot

Z
(0.5m)

Table 5.2

Resolution summary for a two-receiver configuration when T
tot

= 20 s, V
T

= 7610m/s and Z = 100 km. The receiver
o↵set Z = (0, Z, 0) is along V

T

= (0, V
T

, 0) and we consider one receiver at (0,�Z/2, H
R

) and the other one at (0, Z/2, H
R

).
In the Y

2

direction for the parameters used here the minimum is given by �
o

H3

T

/(A2

T

Z).
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Figure 5.5. One-receiver result: Cross-section of the image I(Y ,V ) in the plane (Y
2

, Y
3

). The origin corresponds to the
true values, which are Y

2

= 0 and Y
3

= 500 km. The abscissa is for Y
2

and the ordinate for Y
3

. The units are in m. The target
velocity is V

T

= 7610m/s in the left column, and 3805m/s in the right column.The first row is for the duration T
tot

= 10.5 s
and the second for 22.5 s. The marginal resolutions correspond to those in respectively Figures 5.3 and 5.4.
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Figure 5.6. The corresponding one-dimensional slices obtained by fixing one of the two variables to the correct value.
The plots are normalized by their maximal value. From left to right: (V

1

, V
2

), (V
1

, V
3

), (Y
1

, Y
2

), (Y
1

, Y
3

), and (Y
2

, Y
3

). The
origin corresponds to the true values. The units in the first two plots are in m/s and for the next three plots are in m. The
target velocity is V

T

= (0, V
T

, 0) with V
T

= 7610m/s, and the duration T
tot

of the experiment is 15 s.

To obtain focusing along Y
1

, the receiver o↵set should be along this direction, that is orthogonal to V

T

.
This is what equation (4.6) predicts, and is illustrated in Figure 5.11. However, this comes at the expense
of the lack of focusing along Y

2

. As the theory predicts, it is impossible to locate the target along all three
directions, even if we knew its velocity, as assumed in Figure 5.11.

5.3. Two pairs of receivers. In Figures 5.13-5.14 we illustrate the improvement brought by a second
pair of receivers. The target velocity is V

T

= (0, V
T

, 0). The first pair of receivers has an o↵set Z = (0, Z, 0)
and a common velocity V

R

= (V
R

, 0, 0). The second pair of receivers has an o↵set Z = (Z, 0, 0) and a
common velocity V

R

= (0, V
R

, 0).
We note the improvement in focusing along the cross-range directions Y

1

and Y
2

. Because of the dif-
ferent range directions perceived by the two di↵erent receiver pairs, it is now possible to determine all the
coordinates of the target. We also illustrate the focusing in the plane (V

1

, V
2

).

5.4. Image sensitivity with respect to the transmitter location. The results in Section 5.2 were
obtained with the exact location X

E

of the transmitter. In this section we illustrate the sensitivity of the
image to errors in X

E

. We present in Figure 5.15 cross-sections of the image I(Y ,V ) obtained with a pair
of receivers with o↵set Z = (0, Z, 0) along V

T

= (0, V
T

, 0) and Z = 100 km. We take V
R

= 222m/s, V
T

=
7610m/s and T

tot

= 22.5 s. We consider erroneous transmitter locations shifted by the vector �X
E

(1, 1, 0),
with �X

E

as large as 1 km. We note that there is imaging sensitivity to �X
E

, but this is not as high as in
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T
tot

= 10.5 s, Z = 50 km T
tot

= 10.5 s, Z = 100 km T
tot

= 22.5 s, Z = 50 km

Figure 5.7. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
3

). The origin corresponds
to the true values, which are Y

1

= 0 and Y
3

= 500 km. The abscissa is for Y
1

and the ordinate for Y
3

. The units are in m.
The target velocity is V

T

= (0, V
T

, 0) with V
T

= 7610m/s. The receiver o↵set Z = (0, Z, 0) is along V
T

and we consider
one receiver at (0,�Z/2, H

R

) and the other one at (0, Z/2, H
R

). Its magnitude Z takes two values: 50 km and 100 km, as
indicated in the plots. The duration T

tot

of the experiment is either 10.5 s or 22.5 s. The theoretical range (Y
3

) resolution is
�
o

H2

T

/(A
T

Z), which equals 1.8m for the left plot and 0.9m for the middle and right plots.

T
tot

= 22.5 s, Z = 50 km T
tot

= 22.5 s, Z = 100 km

Figure 5.8. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
2

). The origin corresponds
to the true values, which are zero. The abscissa is for Y

1

and the ordinate for Y
2

. The units are in m. The target velocity is
V
T

= (0, V
T

, 0) with V
T

= 7610m/s. The receiver o↵set Z = (0, Z, 0) is along V
T

= (0, V
T

, 0) and we consider one receiver
at (0,�Z/2, H

R

) and the other one at (0, Z/2, H
R

). Its magnitude Z takes two values: 50 km and 100 km, as indicated in
the plots. The duration T

tot

of the experiment is 22.5 s. The theoretical cross-range resolution along Y
2

which is in this case
�
o

H3

T

/(A2

T

Z) gives 2.6m for Z = 50 km and 1.3m for Z = 100 km.

the one-receiver case (not shown here). The images deteriorate when we increase �X
E

, but they still look
reasonable when �X

E

= 500m, which is more than 104 wavelengths.

6. Summary and conclusions. We have considered the imaging of fast moving objects with passive
correlation based techniques using surface/airborne bistatic radar systems. A single transmitter on the
ground illuminates a sector of the sky and one or more flying receiver platforms record the signals reflected
by a fast moving target. In the one-receiver case we cross-correlate the signal arriving directly from the
transmitter with the reflected signal by adequately selecting the evaluation times in our imaging function
and compensating for Doppler e↵ects. In this case we need to know the arrival time from the transmitter
to the antenna and from the transmitter to the search point in the image, so accurate knowledge of the
transmitter location is needed. In the multiple-receiver case we cross-correlate the reflected signals recorded
at two of the receivers. A surprising result is that here too we need to know the transmitter location, but with
relatively low accuracy. This is unusual for correlation-based imaging and is due to the Doppler corrections
that we need to take into account because of the high velocity of the moving object.

A simplified version of the main results of the paper can be given when we assume that the trajectories
of the target and the antenna are linear and parallel to the ground. We then have the following resolution
formulas for this one-receiver configuration:

(i) Resolution in range is proportional to c
o

/B and is determined by the bandwidth.

(ii) In the direction that the target is moving, resolution is proportional to �
o

H
T

/A
T

, A
T

being the
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T
tot

= 37.5 s, Z = 50 km T
tot

= 37.5 s, Z = 100 km

Figure 5.9. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
2

). The origin corresponds
to the true values, which are zero. The abscissa is for Y

1

and the ordinate for Y
2

. The units are in m. The target velocity is
V
T

= (0, V
T

, 0) with V
T

= 7610m/s. The receiver o↵set Z = (0, Z, 0) is along V
T

= (0, V
T

, 0) and we consider one receiver
at (0,�Z/2, H

R

) and the other one at (0, Z/2, H
R

). Its magnitude Z takes two values: 50 km and 100 km, as indicated in the
plots. The duration T

tot

of the experiment is 37.5 s. The theoretical cross-range resolution along Y
2

which is �
o

H3

T

/(A2

T

Z)
gives 0.92m for Z = 50 km and 0.46m for Z = 100 km.

T
tot

= 10.5 s, Z = 50 km T
tot

= 10.5 s, Z = 100 km T
tot

= 22.5 s, Z = 50 km

Figure 5.10. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (V
1

, V
2

). The origin corresponds
to the true values. The abscissa is for V

1

and the ordinate for V
2

. The units are in m/s. The target velocity is V
T

= (0, V
T

, 0)
with V

T

= 7610m/s. The receiver o↵set Z = (0, Z, 0) is along V
T

and we consider one receiver at (0,�Z/2, H
R

) and the other
one at (0, Z/2, H

R

). Its magnitude Z takes two values: 50 km and 100 km, as indicated in the plots. The duration T
tot

of the
experiment is either 10.5 s or 22.5 s. The theoretical resolution along V

2

is �
o

H
T

/(T
tot

Z) which gives 0.03m/s for Z = 50 km
and T

tot

= 10.5 s, 0.014m/s for Z = 100 km and T
tot

= 10.5 s, and 0.013m/s for Z = 50 km and T
tot

= 22.5 s.

aperture covered by the fast moving target.
For the multiple receiver case, two pairs of receivers are needed for recovering all the unknowns. Assuming
in particular as before that the trajectories are linear parallel to the ground and that one receiver pair is
moving orthogonal to the target and the other parallel to it, we obtain the following:

(i) Resolution in range is proportional to �
0

H2

T

/(ZA
T

), Z being the distance between the receiver
antennas that is assumed constant.

(ii) In the cross-range direction that the target is moving, resolution is proportional
to min

�
c
o

H
T

/(BZ),�
0

H3

T

/(ZA2

T

)
�
.

(iii) In the second cross-range direction resolution is proportional to c
o

H
T

/(BZ).
An issue in the one-receiver case is that the position and velocity of the target cannot be uniquely determined.
Unique recovery can be achieved, however, by using two-pairs of receivers. Increasing the distance between
the two receiver platforms is beneficial for the image quality and we observe an improvement in resolution.
But as the distance between the receivers increases we find that sensitivity to knowing the transmitter
location increases.

In this paper we have focused our attention on resolution. We comment here briefly on the role of noise.
We anticipate that the correlation-based imaging methods that we propose are very robust with respect to
additive measurement noise, because we cross correlate signals recorded at di↵erent time windows in the
one-receiver case and we cross correlate signals recorded by di↵erent receivers in the two-receiver case. We
also anticipate that the proposed methods are robust with respect to medium noise induced by the turbulent
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V
T

= 7610m/s, Z = 50 km V
T

= 7610m/s, Z = 100 km

Figure 5.11. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (Y
1

, Y
2

). The origin corresponds
to the true values, which are zero. The abscissa is for Y

1

and the ordinate for Y
2

. The units are in m. The target velocity
is V

T

= (0, V
T

, 0) with V
T

= 7610m/s or V
T

= 3805m/s, as indicated on the plots. The receiver o↵set Z = (Z, 0, 0) is
orthogonal to V

T

and we consider one receiver at (�Z/2, 0, H
R

) and the other one at (Z/2, 0, H
R

). The magnitude of the
o↵set Z takes two values: 50 km and 100 km, as indicated in the plots. The duration T

tot

of the experiment is 22.5 s. The
theoretical resolution along Y

1

is c
o

H
T

/(BZ) which gives 4.8m for Z = 50 km and 2.4m for Z = 100 km.

T
tot

= 10.5 s, Z = 50 km T
tot

= 10.5 s, Z = 100 km T
tot

= 22.5 s, Z = 50 km

Figure 5.12. One pair of receivers result: Cross-section of the image I(Y ,V ) in the plane (V
1

, V
2

). The origin corresponds
to the true values. The abscissa is for V

1

and the ordinate for V
2

. The units are in m/s. The target velocity is V
T

= (0, V
T

, 0)
with V

T

= 7610m/s. The receiver o↵set Z = (Z, 0, 0) is orthogonal to V
T

. The magnitude of the o↵set Z takes two values:
50 km and 100 km, as indicated in the plots. The duration T

tot

of the experiment is either 10.5 s or 22.5 s. The theoretical
resolution along V

1

is �
o

H
T

/(T
tot

Z) which gives 0.029m/s for the left plot and 0.014m/s for the middle and right plots.

atmosphere. This was shown in passive imaging with stationary arrays in [11, 13, 14].
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Appendix A. Resolution analysis with one receiver. In this appendix we derive the resolution
results stated in section 3, in our regime of separation of scales with large target height H

T

� H
R

, large
target velocity |V

T

| � |V
R

|, and large central frequency !
o

� B. We define this regime using a dimensionless
asymptotic parameter "⌧ 1 in section A.1. The data model in this scaling is given in section A.2, and the
resolution limits are derived in sections A.3 and A.4.

A.1. Scaling. To model the separation of scales, we introduce the asymptotic scaling parameter "⌧ 1,
defined as the ratio of the altitude of the receiver and the altitude of the target. We denote henceforth by
superscript " the real quantities, and use the scaling by " to define their scaled, order one counterparts.
Thus, the initial locations of the receiver and target (at slow time 0) are Y

"

T

and Y

"

R

, and the velocities of
the receiver and target are V

"

T

and V

"

R

. In the numerical setting discussed in Section 5, !"

o

= 2⇡ 9.6GHz,
B" = 622MHz, |V "

R

| = 222m/s, |V "

T

| = 7610m/s, H"

R

= Y "

R,3

= 2104 m, H"

T

= Y "

T,3

= 5105 m, T "

tot

= 22 s,
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unknown estimation theory

V
T,1

0.01m/s
�
o

H
T

T
tot

Z
(0.008m/s)

V
T,2

not determined not determined
V
T,3

not determined not determined

Y
T,1

2.4m
c
o

H
T

BZ
(2.4m)

Y
T,2

not determined not determined
Y
T,3

not determined not determined
Table 5.3

Resolution summary for a two-receiver configuration when T
tot

= 20 s, V
T

= 7610m/s, Z = 100 km, and Z = (Z, 0, 0) is
orthogonal to V

T

= (0, V
T

, 0).

Figure 5.13. Two pairs of receivers result given by summing the images obtained with each pair. We show results for
Z = 100 km. From left to right: Cross-section of the image I(Y ,V ) in the planes (Y

1

, Y
2

), (Y
1

, Y
3

), (Y
2

, Y
3

) and (V
1

, V
2

).
The origin corresponds to the true values. The units in the first three plots are in m and in the last plot in m/s. The target
velocity is V

T

= (0, V
T

, 0) with V
T

= 7610m/s, and the duration T
tot

of the experiment is 22.5 s. The common speed for the
receivers is V

R

= 222m/s.

�s" = 1.5 10�2 seconds, so

" =
Y "

R,3

Y "

T,3

=
H"

R

H"

T

= 0.04.

The system of coordinates is defined by the unit basis vectors (ê
1

, ê
2

, ê
3

), where ê
3

is in the upward vertical
direction.

The reference (order one) length scale is given by the altitude H"

T

of the target (i.e., 5 105 m). The
reference time is the travel time for a round trip from the ground to the target (i.e., 3.3 10�3 s) and the
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Figure 5.14. Two pairs of receivers result given by multiplying the images obtained with each pair. We show results for
Z = 100 km. From left to right: Cross-section of the image I(Y ,V ) in the planes (Y

1

, Y
2

), (Y
1

, Y
3

), (Y
2

, Y
3

) and (V
1

, V
2

).
The origin corresponds to the true values. The units in the first three plots are in m and in the last plot in m/s. The target
velocity is V

T

= (0, V
T

, 0) with V
T

= 7610m/s, and the duration T
tot

of the experiment is 22.5 s. The common speed for the
receivers is V

R

= 222m/s.

unknown estimation theory

V
T,1

0.01m/s
�
o

H
T

T
tot

Z
(0.008m/s)

V
T,2

0.01m/s
�
o

H
T

T
tot

Z
(0.008m/s)

V
T,3

not determined not determined

Y
T,1

2.4m
c
o

H
T

BZ
(2.4m)

Y
T,2

1.5m min
⇣�

o

H3

T

A2

T

Z
,
c
o

H
T

BZ

⌘
(1.6m)

Y
T,3

0.3m
�
o

H2

T

A
T

Z
(0.5m)

Table 5.4

Resolution summary for two pairs of receiver platforms, with T
tot

= 20 s, Z = 100 km. In the Y
2

direction for the
parameters used here the minimum is given by �

o

H3

T

/(A2

T

Z).

reference speed is c
o

(i.e., 3 108 m/s). According to the listed numerical values, we scale the variables by

!"

o

=
!
o

"5
,

B" =
B

"4
,

T "

tot

=
T
tot

"3
,

�S" =
�S

"
,

�s" = �s,

V

"

T

= "3V
T

= "3(V
T,1

, V
T,2

, V
T,3

),

V

"

R

= "4V
R

= "4(V
R,1

, V
R,2

, V
R,3

),

Y

"

T

= Y

T

= (Y
T,1

, Y
T,2

, Y
T,3

),

Y

"

R

= "Y
R

= "(Y
R,1

, Y
R,2

, Y
R,3

),

Z

" = "Z = "(Z
1

, Z
2

, Z
3

),

X

"

E

= "X
E

= "(X
E,1

, X
E,2

, 0),

where all quantities without superscript " are order one. We also consider the scaling of the slow time (over
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�X
E

= 0 �X
E

= 50m �X
E

= 500m �X
E

= 1000m

(V
1

,V
2

)
(Y

1

,Y
2

)
(Y

1

,Y
3

)
(Y

2

,Y
3

)

Figure 5.15. One pair of receivers result: Sensitivity of the image to errors in the transmitter location. The transmitter
is erroneously placed at X

E

+�X
E

(1, 1, 0), with �X
E

shown in the plots. The images in the first row are shown in the plane
(V

1

, V
2

), with V
1

in the abscissa and V
2

in the ordinate. The units are in m/s. The other rows show images in the planes
(Y

1

, Y
2

), (Y
1

, Y
3

), and (Y
2

, Y
3

), and the axes are in units of m.

the recording time window (�T "

tot

/2, T "

tot

/2) as

s" =
s

"3
,

which is consistent with that of length. For example, the receiver position at slow time s" = s/"3 is
X

"

R

(s") = Y

"

R

+ s"V "

R

, which is equal to "X
R

(s) with X

R

(s) = Y

R

+ sV
R

. Similarly the target position is
X

"

T

(s") = Y

"

T

+ s"V "

T

, which is equal to X

T

(s) with X

T

(s) = Y

T

+ sV
T

.
The sub-apertures are defined by the slow time intervals �S" = �S/", and there are many of them,

N" = bT "

tot

/�S"c � 1 = O("�2). Moreover, in each sub-aperture the transmitter emits a large number of
pulses n" = b�S"/�s"c = O("�1) at slow time instances

s"
jl

= S"

j

+ l�s" =
S
j

"3
+ l�s, |l|  n"/2.

Given the velocity scalings this gives the sub-apertures

a"
T

= |V "

T

|�S" = "2|V
T

|�S = "2a
T

and a"
R

= |V "

R

|�S" = "3a
R

,

whereas the large apertures are

A"

T

= |V "

T

|T "

tot

= |V
T

|T
tot

= A
T

and A"

R

= |V "

R

|T "

tot

= "|V
R

|T
tot

= "A
R

.

The transmitter is on the ground X
E,3

= 0, and in the same region as the receiver antenna.
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A.2. Data model. The transmitter emits around time s" the signal

f"(t� s") = 2F
�
"�4Bt

�
cos

�
"�5!

o

t
�
. (A.1)

The recorded data consists of two contributions: the direct wave u"

d

and the reflected (scattered) wave u"

r

:

u"

d

(s" + t) =
1

4⇡|X"

R

(s" + t)�X

"

E

|f
"

⇣
t� |X"

R

(s" + t)�X

"

E

|
c
o

⌘

and

u"

r

(s" + t) = �
Z

t

0

dt0
⇢"

(4⇡)2c2
o

|X"

R

(s" + t)�X

"

T

(s" + t0)|

⇥ 1

|X"

T

(s" + t0)�X

"

E

|f
"

00
⇣
t0 � |X"

T

(s" + t0)�X

"

E

|
c
o

⌘

⇥�
⇣
t� t0 � |X"

T

(s" + t0)�X

"

R

(s" + t)|
c
o

⌘
.

Here ⇢" is the scattering coe�cient of the target. We expand the distances in powers of " and since the
carrier frequency is "�5, we keep the terms up to o("5),

|X"

R

(s" + t)�X

"

E

| = "|X
R

(s)�X

E

|+ "4tV
R

· X

R

(s)�X

E

|X
R

(s)�X

E

| + o("5),

|X"

T

(s" + t0)�X

"

E

| = |X
T

(s)� "X
E

|+ "3t0V
T

· X

T

(s)� "X
E

|X
T

(s)� "X
E

| + o("5),

|X"

T

(s" + t0)�X

"

R

(s" + t)| = |X
T

(s)� "X
R

(s)|+
�
"3t0V

T

� "4tV
R

�
· X

T

(s)� "X
R

(s)

|X
T

(s)� "X
R

(s)| + o("5).

The model of the direct signal is

u"

d

(s" + t) ⇡
f"

�
�"
d

(s")t� t"
d

(s")
�

4⇡|X"

R

(s")�X

"

E

| =
f"

�
�
d

(s)t� t
d

(s)
�

4⇡"|X
R

(s)�X

E

| , (A.2)

where

�"
d

(s") := 1� V

"

R

c
o

· (X
"

R

(s")�X

"

E

)

|X"

R

(s")�X

"

E

| = �
d

(s) := 1� "4
V

R

c
o

· (XR

(s)�X

E

)

|X
R

(s)�X

E

| , (A.3)

and

t"
d

(s) :=
|X"

R

(s")�X

"

E

|
c
o

= t
d

(s) := "
|X

R

(s)�X

E

|
c
o

. (A.4)

As stated before, the quantities with the superscript " are in physical units and those without the epsilon
superscript are in the scaled units.

The reflected signal is

u"

r

(s" + t) ⇡ ⇢"(k"
o

)2

(4⇡)2|X"

T

(s")|2 f
"

⇣
�"
r

(s",Y "

T

,V "

T

)t� t"
r

(s",Y "

T

,V "

T

)
⌘

=
⇢"k2

o

(4⇡)2"10|X
T

(s)|2 f
"

⇣
�
r

(s,Y
T

,V
T

)t� t
r

(s,Y
T

,V
T

)
⌘
, (A.5)

where k"
o

= !"

o

/c
o

= "�5k
o

is the wave number. The Doppler coe�cients are defined by

�"
r

(s",Y ",V ") := 1� V

"

c
o

·
⇣
Y

" + s"V " �X

"

R

(s")

|Y " + s"V " �X

"

R

(s")| +
Y

" + s"V " �X

"

E

)

|Y " + s"V " �X

"

E

|

⌘

+
V

"

R

c
o

· Y

" + s"V " �X

"

R

(s")

|Y " + s"V " �X

"

R

(s")| ,
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and

e�"
r

(s",Y ",V ") := 1� V

"

c
o

·
⇣
Y

" + s"V " �X

"

R

(s")

|Y " + s"V " �X

"

R

(s")| +
Y

" + s"V " �X

"

E

)

|Y " + s"V " �X

"

E

|

⌘
.

They are equal to �
r

(s,Y ,V ) and e�
r

(s,Y ,V ) respectively, which are written in the scaled variables as

�
r

(s,Y ,V ) := 1� "3
V

c
o

·
⇣
Y + sV � "X

R

(s)

|Y + sV � "X
R

(s)| +
Y + sV � "X

E

)

|Y + sV � "X
E

|

⌘

+"4
V

R

c
o

· Y + sV � "X
R

(s)

|Y + sV � "X
R

(s)| ,

and

e�
r

(s,Y ,V ) := 1� "3
V

c
o

·
⇣
Y + sV � "X

R

(s)

|Y + sV � "X
R

(s)| +
Y + sV � "X

E

)

|Y + sV � "X
E

|

⌘
.

The time delay is defined by

t"
r

(s,Y ",V ") =
|Y " + s"V " �X

"

E

|
c
o

+
|Y " + s"V " �X

"

R

(s")|
c
o

e�"
r

(s",Y ",V "),

and it is equal to t
r

(s,Y ,V ) which can be written in the scaled variables as

t
r

(s,Y ,V ) =
|Y + sV � "X

E

|
c
o

+
|Y + sV � "X

R

(s)|
c
o

e�
r

(s,Y ,V ).

A.3. Small-aperture imaging function. The imaging function I"

j

(X",V ") for the j�th sub-aperture
is given by
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1
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where we let �T " = "4�⌘�T , for some ⌘ 2 (0, 1), be slightly longer than the duration of the pulse F (Bt/"4).
In scaled variables X" = X, V " = "3V we can write
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To study the focusing of I
j

we restrict ourselves to search velocities and locations satisfying
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which means that the position and the velocity of the target at slow time S"

j

= S
j

/"3 are known a priori
with a relative accuracy of the order of "2. In physical units this means about 10m/s for the velocity and
800m for the position.

The ratio �
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Let us denote the argument of the second pulse f" in (A.7) by t� ⌧(�,X,V ,X
T
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where we introduced the notation
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Note that assumption (A.8) implies that the first square bracket in (A.9) is O("2), and that the second, third
and last square brackets are O("5). The last but one square bracket is O("4) if the vector e(X

T

(S
j

), S
j

) has
an O(1) component along V

T

. Otherwise the velocity is nearly orthogonal to e(X
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), S
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) and this term
is O("5), as well.
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By assumption (A.8), both  and ' are at most O(1). We also have
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Substituting in (A.7) and using the expression (A.1) of the pulse we obtain that the sum in l can be replaced
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by a continuous integral in � and
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To analyze the focusing of I
j

(X,V ) we evaluate next the two integrals in (A.14). Since � appears in

the argument of the second F , we write it in terms of its Fourier transform bF , whose support is the interval
[�⇡,⇡]. Now we can integrate over � and obtain
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where the approximation sign is because we neglected the term with the rapidly oscillating exponential
exp

�
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which gives a negligible contribution when we integrate over t. We also used
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and bF (�!) = bF (!), because the baseband pulse is real valued.

A.3.1. Target vector location orthogonal to target velocity. We first analyze the resolution
properties of the sub-aperture imaging function (A.15) in the case where  = O("), which occurs when the
target location X
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) is almost orthogonal to the velocity. Then the ! dependent term is negligible in the
argument of the sinc function and the result simplifies to
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where we introduced the new pulse F , given by the autocorrelation of the two pulses F ,

F(t) =

Z
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2⇡
| bF (!)|2ei!t.

The focusing of (A.16) is determined by the support of F and of the sinc function. We conclude that
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(X,V ) is large for
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and
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To interpret the estimate (A.17), let us expand (A.13) in powers of ". By assumption (A.8) we obtain
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where we see from definition (A.10) that
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Therefore, the location of the target is localized along the vector e
�
X

T
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), S
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�
, which points nearly in the

direction of X
T
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) in our case, with an O("4) precision. Recalling the scaling of the bandwidth, the bound
in (A.19) is proportional to c
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/B", the classic range resolution, as stated in Proposition 3.1.
To interpret the estimate (A.18), we expand in powers of " the expressions of  and '. We obtain that
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where we introduced the matrices
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defined in terms of the unit vectors
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If V = V
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, then (A.21) shows that X"
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A.3.2. Target vector location not orthogonal to target velocity. The sub-aperture imaging
function (A.15) is large if (A.17) holds and if the argument in the sinc function is less than ⇡. However,
when X

T

(S
j

) is not orthogonal to V

T

, the ! dependent term in the argument of the sinc function cannot
be neglected, because  = O(1). The support of the sinc function is essentially an interval of order one, so
the sub-aperture imaging function (A.15) is large when the argument in the sinc function is less than ⇡ for
all ! in this interval, which in fact imposes
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This is the same condition as in the previous subsection, although here  can be of order O(1). Therefore,
the discussion of the previous subsection still holds true.

A.4. Large-aperture imaging function. Here we estimate the focusing of
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which sums coherently (A.15) over j. We expect an improvement over the sub-aperture images, due to the
sum of the highly oscillatory exponentials exp
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in (A.15).

It is not possible to calculate the sum analytically, unless we use the further assumption that A
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If that is the case, we see from (A.15) and (A.17), (A.19) that all the terms in the sum are large when
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This is because
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so when we sum (A.15) over j we get the sinc factor
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where  (s) = (C + iS)(
p
s)/

p
s in terms of the Fresnel integral functions C(s) =

R
s

0

cos(t2)dt and S(s) =R
s
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sin(t2)dt. If V = V
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|2(2�v+O(�2)), so that

we get the result stated in section 3.2, equation (3.15).

Appendix B. Resolution analysis with two receivers. In this appendix we derive the resolution
results stated in section 4, in our regime of separation of scales defined in appendix A. The analysis of the
sub-aperture imaging function is in section B.1 and the large aperture case is discussed in section B.2.
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B.1. Small-aperture imaging function. The imaging function for the j�th sub-aperture is
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where the Z indexes correspond to the second receiver at location X
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This can be analyzed as in the previous section, by writing the argument of the first pulse f" as t �
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We also define T Z and  Z and 'Z as before, with X

R

replaced by X

Z

R

.
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Substituting in (B.2) and using the definition of the pulse we get

I
j

(X,V ) ⇡ 4"�20(⇢")2k4
o

(4⇡|X
T

(S
j

)|2)4�S

Z
�S/2

��S/2

d�

Z
�T

"

��T

"

dt

⇥ F
h
"�4B

�
t� T (X,V ,X

T

(S
j

),V
T

, S
j

)
�
+ �B (X,V ,X

T

(S
j

),V
T

, S
j

)
i

⇥ F
h
"�4B

�
t� T Z(X,V ,X

T

(S
j

),V
T

, S
j

)
�
+ �B Z(X,V ,X

T

(S
j

),V
T

, S
j

)
i

⇥ cos

⇢
"�5!

o

h
t� ⌧(0,X,V ,X

T

(S
j

),V
T

, S
j

) + "4� (X,V ,X
T

(S
j

),V
T

, S
j

)

+ "5�'(X,V ,X
T

(S
j

),V
T

, S
j

)
i�

⇥ cos

⇢
"�5!

o

h
t� ⌧Z(0,X,V ,X

T

(S
j

),V
T

, S
j

) + "4� Z(X,V ,X
T

(S
j

),V
T

, S
j

)

+ "5�'Z(X,V ,X
T

(S
j

),V
T

, S
j

)
i�

. (B.5)

Let us write the product of the cosines as half the sum of the cosines of the di↵erence and sum of their
arguments. The rapid oscillations of the cosines due to "�5!

o

t terms make the t integral significant only for
the first part, so we can approximate (B.5) by
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Now we can integrate over � and obtain
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We estimate next the argument of the sinc functions and of the complex exponential. From the definitions
of T and T Z ,
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The definition of ⌧ and ⌧Z gives
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and from the definitions of  , Z ,' and 'Z we get
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and
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The source information is canceled out in these expressions, so the results appear independent of the knowl-
edge of the source. However, we used X

E

in the Doppler factors in (B.1), so the image has some sensitivity
to knowing X

E

.
It remains to expand the right hand sides in (B.8)-(B.11) in order to estimate the resolution of (B.7).

We obtain that
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where the matrix P
TR

is defined in (A.22). Since this argument must be in the support of the pulse, we
obtain that
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or in real units
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where PZ
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Substituting in the argument of the sinc function in (B.7), we get that
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As in the one-receiver case, equation (3.4), we can only localize a linear combination of the velocity and
target location error. However, since the receiver separation is Z" = "Z, this localization is with a precision
O("2). This is not an improvement of the assumption (A.8) that we began with, but it is consistent with it.

The results in Proposition 4.1 follow from (B.13), (B.16), and the approximations
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B.2. Large-aperture imaging function. The large aperture imaging function
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improves the estimate (B.16), due to the coherent sum over j of the !
o

(⌧ � ⌧Z)"�5 rapidly oscillating terms
in (B.7). As was the case in the previous appendix, it is di�cult to calculate this sum analytically, unless
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or, equivalently,
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Here we used the approximation
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or, equivalently, in the scaled variables,

����
(V "

T

� V

")

|V "

T

| ·
�
I�m(0)m(0)T

�
Z

"

����  O

✓
�"
o

H"

T

A"

T

◆
. (B.21)

Note that for horizontal Z we have

�
I�m(0)m(0)T

�
Z ⇡ Z,
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so the estimates above determine the target location and velocity along Z. To see the target location in
range, we need to set V

T

= V in the imaging function. Then, we get from (B.9) and the further expansion
in (B.12) that
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We have to leading order
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so (B.22) gives
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With Zk = Z · V
T

/|V
T

|, and in real units, this gives the range resolution of order �"
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)2/(Z"
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) stated
in section 4.
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